Skip to main content
SUPERVISOR
فاطمه ابطحی فروشانی (استاد مشاور) رسول نصراصفهانی (استاد راهنما)
 
STUDENT
FARZANE ZABIHI
فرزانه ذبیحی

FACULTY - DEPARTMENT

دانشکده ریاضی
DEGREE
Master of Science (MSc)
YEAR
1387
In this thesis , we present an expanded account of some spaces of vector-valued contiuous functions C(X,E) and C(Y,F) on locally compact spaces X and Y.We first define a support point and show that if T from C(X,E) into C(Y,F) be a map, then for each y in Y there exist a unique support point in X. Next we introduce and study disjoint preserving linear maps from C( X,E)into C(Y,F) is said to be separating or disjointness if fg=0 implise TfTg=0 for all f,g in C(X,E).The map from Y into sending each point of Y into its support point will denote by h.Then show that if T from C(X,E) into C(Y,F) is an injective separating map, Then the rang of h is dense i and h is continuous.Also we prove that if T and the invers of T is separating map, then X and Y are homeomorphic and if E is finite dimensional, then E=F. If X and Y be a compact Hausdorff space, E and F be a banach spaces and C(X,E) and C(Y,F) of continuous E-valued and F-valued functions, then Ix for each x in X defined Ix is f in C(X,E) such that f vanishes in a neighborhood of x. We show that if T from C(X,E) into C(Y,F) and the invers of T be a separating linear bijection, then for each x in X, there is a uniqe y in Y such that TIx=Iy.Also X and Y are homeomorphic. In this thesis we define weighted composition operator and prove that every biseparating linear T from C(X,E) into C(Y,F) is weighted composition operator.
فرض کنیم ,A دو جبر مختلط وT از A به B یک نگاشت خطی باشد. T را جداکننده می نامیم اگر برای هر x وy در A داریم xy=0ِ نتیجه دهد TxTy=0. در این پایان نامه راجع به فضای توابع پیوسته ی برداری مقدار C(X,E) و C(Y,F) روی فضاهای موضعا فشرده X و Y بحث می کنیم و بعد از ارائه ی بعضی خواص این فضاها نگاشت هایی را در نظر می گیریم که رابطه ی جداکنندگی را بررسی می کنند.نشان می دهیم اگر X و Y فضاهای موضعا فشرده و هاسدورف باشند و T: C(X,E)? C(Y,F) و T -1 نگاشت های جداکننده باشند آنگاه X و Y همانریختند. همچنین راجع به نگاشت های ترکیبی وزن دار صحبت می کنیم و نشان می دهیم یک نگاشت خطی دوسویی و دوجداکننده T: C(X,E)? C(Y,F) یک نگاشت ترکیبی وزن دار است. رده بندی موضوعی: 33B47 و 38B47. کلمات کلیدی:جداکننده دوسوجداکننده نقطه محمل موضعا فشرده حافظ شمول.

ارتقاء امنیت وب با وف بومی