Skip to main content
SUPERVISOR
Atefeh Ghorbani,Mahmood Behboodi
عاطفه قربانی (استاد راهنما) محمود بهبودی (استاد مشاور)
 
STUDENT
Seyed abolhasan Sepehr hosseini
سیدابوالحسن سپهرحسینی

FACULTY - DEPARTMENT

دانشکده ریاضی
DEGREE
Master of Science (MSc)
YEAR
1388

TITLE

Injectivity Relative to Closed Submodules
In this thesis all rings are associative with identity and all modules are unitary left modules. Let R be any ring. A submodule K of an R -module M is called closed (in M ) provided K has no proper essential axtension in M. Clearly, every direct summand of M is closed in M. Moreover, if L is any submodule of M then there exists a submodule K of M maximal with respect to the property that L is essential submodule of K and this case K is closed submodule of M . A module M is called an extending module if every closed submodule is direct summand. An R- module X is called M-c-injective provided, for every closed submodule K of M, every homomorphism ?: K ? X can be lifted to a homomorphism ?: M ? X. Moreover, X called c-injective provided X is M-c- injective for every R- module M . Not that if M is an extending module then every R- module is M-c- injective. If R is a Dedekind domain and an R- module M is a direct product of simple R- modules then M is M-c -injective. We prove that if R is a Dedekind domain that an R -module X is c -injective if and only if there exists an R- module Y such that Y is a direct product of simple R -modules and injective R -modules with the property that X is isomorphic to a direct summand of Y. We show that such a direct summand is isomorphic to a direct product of homogeneous semisimple R- modules and injective R -modules. Let P is collection of left primitive ideals of R . A submodule L of an R -module M is called P -pure in M provided L ? IM=IL for every ideal I in P . An R -module X is called P -pure-injective provided, for every R -module and every P -pure submodule L of M , every homomorphism ?: L ? X can be lifted to a homomorphism ?: M ? X . We first characterize P - pure-injective modules over rings R such that R ? P is an Artinian ring for every left primitive ideal P of R . Commutative rings clearly have this property. More generally rings satisfying a polynomial identity, FBN rings and semiperfect rings satisfy this property. Then show that for a Dedekind domain the class of c -injective modules is precisely the class of P -pure-injective modules. We show that the characterization does not extend to commutative Noetherian domains which are not Dedekind. In fact we prove that if R is a commutative Noetherian domain and P a maximal ideal of R then the simple R -module R ? P is c -injective if and only if the ideal P is invertible. Finally we show that a commutative Noetherian domain R is Dedekind if and only if every simple R -module is c -injective.
در این پایان نامه مدول های تزریقی را روی دامنه ی ددکیند مشخص می کنیم. برای این منظور نشان می دهیم که اگر R دامنه ی ددکیند باشد، آنگاه Mمدول -c تزریقی است اگر و تنها اگر یکریخت با حاصل ضرب مستقیمی از مدول های نیم ساده ی همگن و مدول های تزریقی باشد. همچنین نشان می دهیم که دامنه ی نوتری جابجایی Rددکیند است اگر و تنها اگر هر مدول ساده -c تزریقی باشد. کلمات کلیدی: مدول های خالصc -تزریقی، مدول های – P خالص-تزریقی، ایدآل های تقریبا اصلی، دامنه های ددکیند.

ارتقاء امنیت وب با وف بومی