Skip to main content
SUPERVISOR
مژگان سپهری (استاد مشاور) بهناز عمومی (استاد راهنما)
 
STUDENT
Mahboubeh Jannesari Ladani
محبوبه جان نثاری لادانی

FACULTY - DEPARTMENT

دانشکده ریاضی
DEGREE
Master of Science (MSc)
YEAR
1389

TITLE

Relations Between Graph Theory and Molecular Biology
Molecular biology is a branch of biology that deals with the molecular basis of biological activity . Molecular biology chiefly concerns itself with understanding the interactions between the various systems of a cell , including the interactions between the different types of DNA , RNA and protein biosynthesis as well as learning how these interactions are regulated . In recent years several spectacular events connected with genome studies have occurred , reading the human genome being one of them . Since a discovery by Watson and Crick their double helix model of a DNA chain , biology has made a great progress in nderstanding foundations of life . The progress would have not been possible , however , without a help from other areas of science , especially its part connected with mathematics . It is desirable to explore mathematical tools for efficient extraction of information from such sources . It is worth highlighting that graph theory is a fine instance of pure mathematics that has found a variety of applications in the course of time . Created in the works of L . Euler (1707–1783) in the eighteenth century . The principles of graph theory , which was earlier applied in fields such as electrical engineering and computer networks are now being adopted to investigate protein structure , DNA sequencing and other problem in molecular biology . In this thesis , we present a survey on using of graph theoretical techniques in molecular biology in the first part and in the second part , we study the application of molecular biology in solving the hard problem in graph theory . The organization of the thesis is as follows . In the first chapter , we introduce a few basic concepts of graph theory and molecular biology that are necessary to understand the subsequent exposition . In Part 1 , Chapter 2 discusses the DNA sequencing problem and the DNA assembling and application of graph theory in solving them are discussed . The graph theory approach to RNA structures has implications for RNA genomics , structure analysis and design that are disscussed in Chapter 3 . In Chapter 4 , we summarize current applications and development of graph theory modeling in protein identification , and the manner in which graphs are analyzed and parameters relevant to protein structure are extracted , are explained . The structural and biological information derived from protein structures using these methods is presented . In Chapters 5 and 6 , we discuss recent work on identifying and modelling the structure of bio-molecular networks and applying graph theory to drug discovery and design with use of some important topological indices . In Part 2 , we will concentrate on the approach for solving hard problem especially hard problem in graph theory by molecular biology called DNA computing . DNA computing is a form of computing which uses DNA , biochemistry and molecular biology , instead of the traditional silicon-based computer technologies . DNA computing , or more generally , biomolecular computing , is a fast developing interdisciplinary area . Research and development in this area concerns theory , experiments , and applications of DNA computing.\\ This field was initially developed by Leonard Adleman of the University of Southern California , in 1994 . Adleman demonstrated a proof-of-concept use of DNA as a form of computation which solved the seven-point Hamiltonian path problem . Since the initial Adleman experiments , advances have been made and various Turing machine have been proven to be constructible . In Chapter 7 , we discuss algorithms that use of different thechniques of DNA computing for solving some important NP problem of graph theory in polynomial number of biological operations .
زیست‌شناسی مولکولی علمی است که شناختی از طبیعت همه موجودات زنده در سطح مولکول برای ما فراهم می‌کند، امروزه پیشرفت‌های زیادی در این زمینه ایجادشده است که بدون ارتباط با علوم دیگر، از جمله ریاضیات، هرگز ممکن نبوده است. به منظور استخراج کارآمد اطلاعات در این زمینه نیاز است که ابزارهای ریاضی توسعه یابند، اصول نظریه گراف که معمولاً در زمینه های مهندسی الکترونیک و شبکه‌های کامپیوتری کاربرد فراوان دارد، امروزه در تحقیقات، درباره‌ی انواع ساختارهای بیولوژیکی مورد استفاده قرار گرفته است. به منظور مطالعه کاربردهای نظریه گراف در زیست‌شناسی مولکولی، هم ‌چنین تأثیر متقابل زیست‌شناسی مولکولی در گراف، این پایان‌نامه، در دو قسمت اصلی گردآوری شده است. ابتدا به کاربردهای ابزار گراف در مباحثی هم‌چون توالی‌یابیDNA ، یافتن RNAهای جدید ، مطالعه ساختار و عملکرد پروتئین‌ها و شبکه‌های برهم‌کنش پروتئینی، طراحی و کشف داروهای جدید پرداخته می‌شود. در قسمت دوم به‌عنوان کاربردی از زیست‌شناسی مولکولی در حل مسائل سخت گراف، نانورایانه‌هایی به نام DNAرایانه معرفی می‌شوند که ممکن است در آینده با توسعه ابزارهای زیست‌شناسی، مسائل NP- کامل و غیرقابل‌حل به‌‌وسیله کامپیوترهای سیلیکونی، با به‌کارگیری این رایانه‌ها، در زمان چندجمله‌ای به جواب دست یابند. الگوریتم‌هایی برای انواع مختلفی از مسائل پیچیده گراف به این روش نیز ارائه می‌گردد.

ارتقاء امنیت وب با وف بومی