Skip to main content
SUPERVISOR
Rasol Asheghi hoseinabadi,Mohamadreza Raofi
رسول عاشقی حسین آبادی (استاد راهنما) محمد رضا رئوفی (استاد مشاور)
 
STUDENT
Elham Mostajeran goortani
الهام مستاجران گورتانی

FACULTY - DEPARTMENT

دانشکده ریاضی
DEGREE
Master of Science (MSc)
YEAR
1390

TITLE

Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop
Hilbert's 16th problem was posed by David Hilbert at the Paris conference of the International Congress of Mathematicians in 1900 , together with the other 22 problems . The original problem was posed as the problem of the topology of algebraic curves and surfaces . Actually the problem consists of two similar problems in different branches of mathematics: 1 - An investigation of the relative positions of the branches of real algebraic curves of degree n ( and similarly for algebraic surfaces ) 2 - The determination of the upper bound for the number of limit cycles in polynomial vector fields of degree n and an investigation of their relative positions. \\indent Usually , the maximum of the number of limit cycles is denoted by H(n) , and is called the Hilbert number . Recall that a limit cycle is an isolated closed orbit . It is the ?- (forward) or ?- (backward) limit set of nearby orbits . In many application the number and positions of limit cycles are important to understand the dynamical behavior of the system . This problem is still open even for the case n=2 . Limit cycle behavior is observed in many physical and biological systems . As usual , we use the notion of the cyclicity for the total number of limit cycles which can emerge from a configuration of trajectories (center , period annulus , a singular loop) under a perturbation. There are many problems in mechanics , electrical engineering and the theory of automatic control which are described by non-smooth systems . More precisely , we suppose that the unperturbed system dx = H_y , dy = ?H_x. Has a family of periodic orbits L_h around the origin . If h ?1 , L_h approaches the origin which is an elementary center of parabolic-focus type . And if h ?0, L_h ?L_0, where L_0 is a compound homoclinic loop with a saddle S_1(1 , 0). \\indent In this thesis , we study limit cycle bifurcations for a kind of non-smooth polynomial differential systems by perturbing a piecewise linear Hamiltonian system with the center at the origin and a homoclinic loop around the origin . By using the first Melnikov function of piecewise near-Hamiltonian systems , we give lower bounds of the maximal number of limit cycles in Hopf and homoclinic bifurcations , and derive an upper bound of the number of limit cycles that bifurcate from the periodic annulus between the center and the homoclinic loop up to the first order in ? . In the case when the degree of perturbing terms is low , we obtain a precise result on the number of zeros of the first Melnikov function.
در این پایان نامه انشعابات سیکل‌های حدی برای یک نوع از سیستم‌های چند‌جمله‌ای ناهموار را با مختل کردن یک سیستم همیلتونی قطعه‌ای خطی دارنده یک مرکز در مبدأ و یک حلقه هموکلینیک حول مبدا مطالعه می‌کنیم. با استفاده از تابع ملنیکوف مربوط به سیستم‌های تکه‌ای هموار نزدیک به همیلتونی، کران‌های پایینی برای ماکزیمم تعداد سیکل‌های حدی در انشعابات هاپف و هموکلینیک بیان می‌کنیم. هم چنین تخمینی برای تعداد سیکل‌های حدی که از طوق تناوبی بین مرکز و مدار هموکلینیک منشعب می‌شوند را به دست می‌آوریم. وقتی درجه جملات اختلال کم است، نتیجه دقیقی روی تعداد صفرهای تابع ملنیکوف مرتبه اول به دست می‌آوریم.

ارتقاء امنیت وب با وف بومی