Skip to main content
SUPERVISOR
Majed Gazor,Amir Hashemi
مجید گازر (استاد راهنما) امیر هاشمی (استاد مشاور)
 
STUDENT
Nasrin Sadri
نسرین صدری

FACULTY - DEPARTMENT

دانشکده ریاضی
DEGREE
Master of Science (MSc)
YEAR
1391

TITLE

Computation of the normal form and it's applications in dynamics analysis of an HIV model
Many phenomena in chemistry , physics and engineering can be modeled by parametric nonlinear differential systems . These systems demonstrate complicated dynamics , when the parameters reach certain singular values . Therefore , it is important to understand their dynamics near the critical values . Normal form theory is one of the most efficient methods for the local bifurcation analysis of such systems . The main idea is to use a nonlinear change of coordinates to convert a given vector field to its simplest form , called the simplest normal form . The resulting system shares certain qualitative properties of the original system . Here , we mean by {\\it qualitative properties} as those properties invariant under our permissible changes of coordinates . In this thesis , we discuss normal forms for those systems whose linear part has a pair of imaginary eigenvalues (called Hopf singularity) as well as those with a zero eigenvalue along with a pair of imaginary eigenvalues (so called Hopf-zero singularity) . Derivation of the focus values are also considered as an application of our computer program implementation in Maple of the parametric Hopf singularity with symbolic coefficients . Given our approach , the first (well-known) and second order focus values are readily derived and presented . Recently , the simplest normal form for Hopf-zero singularity has been obtained through a representation of \\(sl(2)\\) Lie algebra over the space of all dir=rtl align=center In the existing literature , many mathematical models have been introduced in order for the dynamics study of the HIV-1 virus . In this thesis , we analyze an ordinary differential equation system that models the fighting of the HIV-1 virus with a genetically modified virus . This is to continue a previous result on an HIV-1 therapy model , by fighting the HIV-1 virus by injecting another virus into the infected patient . Here , a modification of the model is proposed , that is to add a constant \\(\\eta\\) into the recombinant virus equation . The associated dynamics is studied in details . It is showed that an increase in the constant \\(\\eta\\) greatly increases the Hopf critical value . A numerical example is provided to demonstrate the bifurcation direction and stability . Here , a normal form computational approach is applied and an accurate estimates for the amplitudes and the periods of the bifurcated limit cycles is given . Numerical simulations are performed in order to confirm the theoretical results . Finally , it is concluded that any increase in \\(\\eta\\) is benefic
بسیاری از مسائل مربوط به فیزیک، شیمی، مهندسی و غیره با یک دستگاه غیرخطی مدل‌سازی می‌شوند. در بیشتر موارد دستگاه‌های غیر خطی ساختار پیچیده‌ای دارند و تجزیه و تحلیل دینامیک آن‌ها دشوار می‌باشد. نظریه فرم نرمال یکی از موثرترین راه‌ها برای تجزیه و تحلیل موضعی در اطراف نقطه تعادل یا جواب‌های تناوبی می‌باشد. در این پایان‌نامه، فرم نرمال مرتب? اول دستگاه‌های دینامیکی منفرد هاپف و فرم نرمال مداری دستگاه‌های دینامیکی منفرد هاپف-صفر را مورد بررسی قرار می‌دهیم. هم‌چنین به یکی از جدیدترین مدل‌های درمان ایدز، یعنی تزریق یک ویروس به طور ژنتیکی تغییر یافته به بدن مبتلایان، یک پارامتر ثابت به منظور نمایش سرعت تزریق اضافه و به کمک فرم نرمال، دینامیک آن را بررسی خواهیم کرد.

ارتقاء امنیت وب با وف بومی