Skip to main content
SUPERVISOR
Farhad Fazileh,Peyman Sahebsara
فرهاد فضیله (استاد راهنما) پیمان صاحب سرا (استاد مشاور)
 
STUDENT
Mozhdeh Forouzandeh Hafshejani
مژده فروزنده هفشجانی

FACULTY - DEPARTMENT

دانشکده فیزیک
DEGREE
Master of Science (MSc)
YEAR
1388

TITLE

Study of the Electronic Quantum Transport of Disordered Graphene Nanoribbons
Graphene is an allotrope of carbon. Recently , graphene has emerged as a fascinating system for fundamental studies in condensed matter physics. The discovery of graphene and its remarkable electronic and magnetic properties initiated great research interest in this material. The Nobel Prize in Physics for 2010 was awarded to Andre Geim and Konstantin Novoselov at the University of Manchester for groundbreaking experiments regarding the two dimensional material graphene. Graphene is a one atom thick layer of graphite, where low-energy electronic states are described by the massless Dirac fermion, so that the unique features of graphene electronic properties arising from its gapless, massless, chiral Dirac spectrum are highlighted. Furthermore Graphene nanoribbons are candidate materials for future applications in nanoelectronics and molecular devices due to their semiconducting properties. Finite graphite systems having a zigzag edge exhibit a special edge state. The corresponding energy bands are almost flat at the Fermi level and thereby give a sharp peak in the density of states. The charge density in the edge state is strongly localized on the zigzag edge sites. No such localized state appears in graphite system having an armchair edge. Moreover, the quality of the draphene derivatives are so good that ballistic traort and quantum Hall effects (QHE) have been observed. Among graphene derivatives, graphene nanoribbons constitute a fascinating object due to a rich variety of band gaps, from metals to widegap semiconductors. In particular, the half filled zero energy states emerge in all zigzag nanoribbons and hence they are metallic. Another basic element of graphene derivatives is a graphene nanodisk. It is a nanometer scale disk like material which has a closed edge. It is also referred to as nanoisland, nanoflake, nanofragment or graphene quantum dot. Nanoribbons and nanodisks correspond to quantum wires and quantum dots, respectively. They are candidates of future carbon-based nanoelectronics and spintronics alternative to silicon devices. In this project, the electronic quantum traort properties of graphene nanoribbons are studied. Although these systems share the similar graphene electronic structure, confinement effects are playing a crucial role. The lateral confinement of charge carriers could create an energy gap near the charge neutrality point, depending on the width of the ribbon.Then the conductance of metallic graphene nanoribbons with single defects and weak disorder at their edges is investigated in a tightbinding model. We find that a single edge defect will induce quasilocalized states and consequently cause zero conductance dips. The center energies and breadths of such dips are strongly dependent on the geometry of graphene nanoribbons. Armchair graphene nanoribbons are more sensitive to a vacancy than zigzag graphene nanoribbons, but are less sensitive to a weak scatter. More importantly, we find that with weak disorder that is modeled with the Anderson model, zigzag graphene nanoribbons will change from metallic to semiconducting due to Anderson localization. However, weak disorder only slightly affects the conductance of armchair graphene nanoribbons near the Fermi energy. Keywords: Graphene nanoribbon, Quantum traort, Coherent traort, Disordered systems, Weak scatterer, Vacancy, Landauer formalism.
: با کشف گرافین در سال 200? و مشاهده ی خواص ممتاز الکتریکی این ماده برای استفاده در صنایع الکترونیک و اسپینترونیک، ضرورت مطالعه ی خواص ترابرد الکتریکی و اسپینی این ماده مورد توجه قرار گرفت. یکی از کاندیداهای استفاده در ترابرد الکتریکی جهت انتقال اطلاعات، نانوروبان های گرافینی هستند. در این میان بررسی اثر بی نظمی، شامل بی نظمی های موضعی ساختاری و ناهمواری های لبه ی نانوروبان ها اثرات مهمی روی خواص ترابرد این مواد دارند. در این پروژه جهت مطالعه ی این اثرات، ترابرد نانوروبان های گرافینی را در حضور و عدم حضور بی نظمی ها برای پهناها و طول های متفاوت بررسی کردیم. ابتدا ماتریس هامیلتونی تنگابست سیستم در حضور بی نظمی )تهی جای یا پراکندگی ضعی( را در فضای حقیقی تشکیل دادیم، سپس با استفاده از ماتریس هامیلتونی، ماتریس تابع گرین سیستم در فضای حقیقی به دست آوردیم و با استفاده از ماتریس تابع گرین ضریب هدایت الکتریکی سیستم محاسبه شد و با توجه به رابطه ی بین هدایت الکتریکی و ضریب هدایت الکتریکی که با فرمول لاندائر به هم مربوط می شوند، تغییرات هدایت الکتریکی برحسب تغییرات بی نظمی و همچنین انرژی فرمی را به دست آوردیم. در ادامه، تمام این محاسبات را در حضور بی نظمی اندرسون تکرار کردیم. کلمات کلیدی : نانوروبان های گرافینی، ترابرد الکتریکی، تهی جای، پراکندگی ضعیف، تابع گرین، فرمول لاندائر.

ارتقاء امنیت وب با وف بومی