Skip to main content
SUPERVISOR
Reza Mokhtari,Hamid Reza Marzban
رضا مختاری (استاد مشاور) حمیدرضا مرزبان (استاد راهنما)
 
STUDENT
Farzaneh Akbari Nahrekhalaji
فرزانه اکبری نهرخلجی

FACULTY - DEPARTMENT

دانشکده ریاضی
DEGREE
Master of Science (MSc)
YEAR
1390

TITLE

Analysis , identification and optimal control of linear multi-delay systems using hybrid of block-pulse functions and legendre polynomials
Analysis , identification and optimal control of time-delay systems have been of considerable concern . Delays occur frequently in many practical systems and different branches of engineering and sciences such as chemical processes , transmission lines , robotics , communication networks , manufacturing and power systems . Therefore time-delay systems are very important as their analysis , identification , stability and optimization to many investigators . The presence of delay makes analysis and control design much more complicated . The application of Pontryagin’s maximum principle to the optimization of control systems with time-delays results in a system of coupled two-point boundary value problem involving both delayed and advanced terms whose solution except in some special cases is very difficult . Therefore , the main object of all computational aspects of optimal control of time-delay systems has been to devise a methodology to avoid the solution of the mentioned two-point boundary value problem . Orthogonal functions have been widely used to solve various problems of dynamic systems . The main characteristic of this technique is that it reduces these problems to those of solving a system of algebraic equations , thus greatly simplifying the problem . Up to now many research works have been devoted to the numerical treatment and theoretical analysis of various types of linear delay systems . The operational matrices of delay , product and integration are sparse matrices , hence making the method computationally attractive without sacrificing the accuracy of the solution . In recent years , different types of hybrid functions have been successfully applied for solving various types of problems arising in diverse areas of engineering and science . An essential property of hybrid function is the good representation of smooth and especially piecewise smooth functions by finite hybrid expansion . Typical examples are Walsh functions , block-pulse , Legendre polynomials , Chebyshev polynomials and Fourier series . In this thesis , we are concerned with the analysis , identification and optimal control of linear multi-delay systems with a quadratic performance index . The presented approach is based on direct method using a hybrid of block-pulse functions and Legendre polynomials . The first part of the thesis is devoted to the numerical treatment of linear multi-delay systems . The second part of the current thesis is relevant to parameter identification of time-invariant multi-delay systems . Finally , the optimal control of multi-delay systems is discussed . To solve optimal control of multi-delay systems; an effective numerical method is successfully implemented . The excellent properties of hybrid functions together with the associated operational matrices of integration , product and delay are then used to transform the mentioned optimal control problem into a mathematical optimization problem whose solution is more easier than the original one . Various types of multi-delay systems are investigated to demonstrate the effectiveness and computational efficiency of the proposed method . The method has a simple structure , easy to implement and provides very accurate solutions . Due to the inherent behavior of time-delay systems , the analytical solution of this class of systems is piecewise smooth . Accordingly , the exact solution of multi-delay systems cannot be obtained solely either by block-pulse functions or by Legendre polynomials .
سیستم‌های تأخیری در بسیاری از شاخه‌های علوم و فنون کاربرد دارند، از این نظر آنالیز، شناسایی و کنترل بهینه این رده از سیستم‌ها از اهمیت بسزایی برخوردار است که در رده‌بندی مهمی از سیستم‌های کنترل جای می‌گیرند. پدیده‌هایی نظیر رشد جمعیت، شبکه‌های عصبی، خطوط انتقال، فرایندهای صنعتی و ... با استفاده از معادلات دیفرانسیل تأخیری مدل‌سازی می‌شوند. در بیشتر موارد فرآیند مربوط به پاسخ تحلیلی سیستم‌های تأخیری فوق‌العاده مشکل است، بدین لحاظ روش‌های عددی به‌خصوص در دو دهه‌ی اخیر مبتنی بر چندجمله‌ای‌های متعامد و چندجمله‌ای‌های تیلور و همچنین توابع متعامد مورد توجه بسیاری از محققین و مهندسین برای حل این‌گونه از سیستم‌ها قرار گرفته‌است . هدف این پایان‌نامه، استفاده از یک روش عددی موثر و کارا مبتنی بر توابع ترکیبی لژاندر-بلاک پالس برای آنالیز و شناسایی معادلات دیفرانسیل تأخیری چند‌گانه‌ی خطی و هم‌چنین کنترل بهینه‌ی سیستم‌های تأخیری چند‌گانه خطی با تابعی معیار درجه دوم است. ابتدا توابع ترکیبی لژاندر-بلاک پالس معرفی شده و سپس با استفاده از روش مستقیم و ماتریس‌های عملیاتی انتگرال، حاصل‌ضرب و تأخیر، سیستم تأخیری به یک دستگاه معادلات خطی تبدیل می‌شود که حل آن به مراتب ساده‌تر از حل مساله‌ی اصلی است. برای نشان دادن دقت، قابلیت و کارایی روش مذکور مثال‌های متعددی بیان می‌شود.

ارتقاء امنیت وب با وف بومی