Carbon fiber is considered a good candidate for reinforcing metal matrix composites due to its unique properties. In the present study, cast A413 aluminum alloy reinforced with short carbon fibers was produced using a combination of vortex and squeeze casting processes. Then the effects of applied pressure, reinforcement volume percentage and fiber coating on density, porosity content, reinforcement distribution, mechanical properties, electrical conductivity and wear properties of the produced composites were studied. Nickel-phosphorus electroless deposition was used for coating the carbon fibers, and the effect of addition different concentrations of PVA surfactant to the electroless bath, on the uniformity of the deposited coating was investigated. The optimum concentration of PVA in the bath was identified as 0.5 g/lit. Applying pressure on the molten metal led to increased density and decreased porosity of the cast samples. Similar effects were observed when coated short fibers were used. By increasing the percentage of carbon fibers, the density was reduced and the porosity of the samples increased. Distribution of short carbon fibers in the matrices of the samples reinforced with uncoated fibers was poor where most of the fibers were agglomerated and not infiltrated by the melt through atmospheric pressure casting. Squeeze casting resulted in infiltration of the agglomerates. Using coated short carbon fibers and application of pressure on the melt caused a rather uniform distribution of the fibers in matrix. In the composites reinforced with uncoated fibers and with no applied pressure, the mechanical and wear properties were reduced by increasing the reinforcement percentage. In the composites synthesized under pressure using uncoated fiber, the mechanical properties were improved by increasing the fiber content up to 2 vol.%, after which they decreased. In the composites synthesized under pressure using coated fibers, improvement of the mechanical properties by increasing the fiber content steadily continued. The ultimate tensile strength and hardness value of the composites reinforced with 3 vol.% fiber under such conditions increased by more than two times and close to two times, respectively, compared to the gravity cast monolithic samples. The wear resistance of gravity cast composites were reduced whereas those of the squeeze cast composites increased compared to the monolithic samples. The results showed a decrease in the electrical resistance of the composite samples compared to the corresponding monolithic ones