Skip to main content
SUPERVISOR
Nilofar Ghisari,Maziar Palhang
نیلوفر قیصری (استاد مشاور) مازیار پالهنگ (استاد راهنما)
 
STUDENT
Maedeh Ahmadi
مائده احمدی

FACULTY - DEPARTMENT

دانشکده مهندسی برق و کامپیوتر
DEGREE
Master of Science (MSc)
YEAR
1387

TITLE

Improving contour based object detection and application of Longest Common Subsequence (LCS) problem in finding feature correspondence and hypothesis verification
An important research area in computer vision is object detection. Object detection means detecting objects belonging to a specific justify; MARGIN: 0cm 0cm 0pt; unicode-bidi: embed; DIRECTION: ltr" dir=ltr The second part of the thesis introduces a method for finding corresponding features between model and hypothesis, resulted from Hough transform. Hough transform models the object's structure by considering each feature location with respect to its center. The shortcoming of this method is that it considers the location of each feature independent of others and ignores relative location of features. To overcome this problem, we formulate the feature correspondence problem between model and hypothesis as a Longest Common Subsequence (LCS) problem. Model and hypothesis images are represented as feature strings and longest common substring between them is calculated. So, by considering features order, corresponding features between model and hypothesis are obtained. In the final step, similarity of model and the corresponding features is calculated using shape context. We applied our method on two subsets of standard ETHZ shape dataset. The achieved results show that the proposed method improves Hough transform performance considerably and has comparable or better results in comparison with previous methods. Keywords: Contour-based object detection, In-plane rotation invariance, 4D hough space, Hypothesis verification, Longest Common Subsequence
تشخیص شیء در تصاویر یکی از زمینه های تحقیقاتی مهم در حوزه ی بینایی کامپیوتر است. منظور از تشخیص شیء، تشخیص اشیای متعلق به یک رده ی خاص (مانند بطری، انسان یا هواپیما) در تصویر می باشد. هدف طراحی سیستمی است که قادر باشد با دریافت نمونه های آموزشی (ویا مدلی) از یک رده شیء، اشیای متعلق به آن رده را در تصاویر جدید تشخیص دهد. از جمله کاربردهای این زمینه می توان به سیستم های امنیتی، سیستم های دستیار راننده، جستجو و سازمان دهی حجم بسیار زیاد تصاویر و فیلم hy;های ویدئویی موجود، کمک به افراد دارای مشکل بینایی جهت درک محیط و بهبود کارآیی موتورهای جستجوی تصاویر اشاره کرد. تاکنون روش های متعددی برای تشخیص شیء در تصاویر ارائه شده است ولی کارآیی روش های موجود با کارآیی انسان فاصله ی بسیار زیادی دارد. یکی از رویکردهای متداول و موفق در تشخیص شیء، استفاده از تبدیل هاف تعمیم یافته است. روش مذکور شامل دو مرحله ی کلی است: 1) اعمال تبدیل هاف، رأی گیری در فضای سه بُعدی مکان-اندازه و تولید فرضیه های اولیه برای مکان قرارگیری و اندازه ی شیء. 2) تصدیق فرضیه ها و انتخاب فرضیه های معتبر. اعمال تبدیل هاف با توجه به ویژگی های محلی انجام می شود. در این پایان نامه از ویژگی های k -بخش مجاور ( k AS) که نوعی ویژگی های مبتنی بر کانتور هستند، جهت توصیف و تشخیص شیء استفاده شده است. ویژگی های مبتنی بر کانتور نسبت به تغییرات رنگ، بافت و روشنایی محیط مقاومند و ابزار مناسبی برای توصیف شکل شیء هستند. در بخش اول این پایان نامه روش تشخیص مبتنی بر کانتوری ارائه می شود که نسبت به دوران در صفحه مقاوم است. برای این کار معیار شباهت ویژگی های 2 AS، چگونگی اعمال تبدیل هاف و فضای رأی گیری هاف به گونه ای تغییر داده شده اند که زاویه ی دوران شیء به عنوان بُعد چهارم فضای رأی گیری (به همراه سه بُعد مربوط به مکان و اندازه) تخمین زده شود. سپس برای بهبود نتایج حاصل از رأی گیری ، روشی مبتنی بر تبدیل هاف حاشیه-بیشینه پیشنهاد شده است. برای بررسی کارآیی روش پیشنهادی از تصاویر دوران یافته ی مجموعه ی مرجع "گاوهای TUD" استفاده شده است. نتایج به دست آمده نشان می دهد که روش پیشنهادی قادر است با دقت قابل قبولی مکان و زاویه ی دوران شیء را تخمین بزند. در بخش دوم این پایان نامه روشی برای یافتن ویژگی های متناظر بین مدل و فرضیه و تصدیق فرضیه های حاصل از تبدیل هاف ارائه شده است. در روش های مبتنی بر تبدیل هاف، ساختار شیء با توجه به محل قرارگیری هر ویژگی نسبت به مرکز شیء مدل می شود. ضعف مدل مذکور آن است که مکان هر ویژگی مستقل از سایر ویژگی ها در نظر گرفته می شود و از محل نسبی هر ویژگی نسبت به سایر ویژگی ها صرف نظر می شود. در این پایان نامه برای حل این مشکل، مسئله ی یافتن تناظر ویژگی های مدل و فرضیه، در قالب مسئله ی یافتن طولانی ترین زیردنباله ی مشترک مدل شده است. تصاویر فرضیه و مدل به صورت رشته هایی از ویژگی های محلی کلمات کلیدی: 1- تشخیص شیء مبتنی بر کانتور 2- مقاومت نسبت به دوران در صفحه 3- فضای هاف چهار بُعدی 4- تصدیق فرضیه 5- طولانی ترین زیررشته ی مشترک

ارتقاء امنیت وب با وف بومی