Skip to main content
SUPERVISOR
Majed Gazor,Mohammadreza Koushesh khajoei
مجید گازر (استاد مشاور) محمدرضا کوشش خواجوئی (استاد راهنما)
 
STUDENT
Reza Saleki
رضا سالکی

FACULTY - DEPARTMENT

دانشکده ریاضی
DEGREE
Master of Science (MSc)
YEAR
1392

TITLE

Lindel?f Property with Respect to an Ideal
We define being Lindel?f with respect to an ideal and investigate basic properties of the concept, its relation to known concepts, and its preservation by functions, suaces, pre-images, and products. An ideal is a nonempty collection of subsets of X closed under operations of subset ( “heredity” ) and finite union ( “finite additivity” ). If in addition the ideal is closed under the operation of countable unions, it is called ? - ideal. We denote a topological space (X,?) with an ideal I defined on X as (X,?,I) and call (X,?,I) an ideal topological space. A space (X,?,I) is said to be I - Lindel?f or Lindel?f with respect to I, if every open cover U of X has a countable subcollection V such that X ? ?V ? I. a space is Lindel?f iff it is {?} - Lindel?f. Frolik defines a space to be weakly Lindel?f if every open cover U of the space has a countable subcollection V such that X = ?V. We now show that weakly Lindel?f spaces are a special case of Lindel?f with respect to an ideal. If (X,?) is a space, we denote the ideal ofnowhere dense setsbyN(?) and the? -ideal. of meager( first category ) subsetsbyM(?). An ideal I on (X,?) is said to be ? - codense if I ? ? = ?. Let (X,?) be a space. (1) (X,?) is weakly Lindel?f iff (X,?) is N(?) - Lindel?f. (2) (X,?) is weakly Lindel?f iff (X,?) is Lindel?f with respect to some ? - codense ideal. (3) If (X,?) is a Baire space, then (X,?) is weakly Lindel?f iff (X,?) is M(?) - Lindel?f. A space X is said to be (countably) compact with respect to an ideal I, or simply (countably) I- compact, if every (countable) open cover of the space admits a finite subcollection which covers all the space except for a set in the ideal. It is shown that a space X with an ideal I is countably I - compact if and only if every locally finite collection of non-ideal subsets is finite. A space X with an ideal I is said to be paracompact with respect to I, or simply I-paracompact, if every open cover of the space admits a locally finite open refinement (not necessarily a cover) which covers all the space except for a set in the ideal. Let (X,?) be a space with an ideal I such that X is I-paracompact and I ? ? = {?}. It is then shown that countable I-compactness and I-compactness are equivalent. Special cases include; countable compactness is equivalent to compactness in paracompact spaces; light compactness is equivalent to quasiH-closedness in almost paracompact spaces; and countable meager- compactness is equivalent to meager-compactness in meager-paracompact Baire spaces.
در این پایان‌نامه، به معرفی ویژگی لیندلوف نسبت به یک ایده‌آل و ویژگی فشرده‌ شمارش‌پذیری نسبت به یک ایده‌آل می‌پردازیم و ارتباط این ویژگی‌ها را با سایر مفاهیم توپولوژیکی مورد مطالعه قرار می‌دهیم. به این منظور ابتدا به تعریف فضای لیندلوف نسبت به یک ایده‌آل و سایر فضاهای مرتبط مانند فضای به‌طور ضعیف لیندلوف و فضای به‌طور تقریبی لیندلوف نسبت به یک ایده‌آل می‌پردازیم و ارتباط آن‌ها را با مجموعه‌های هیچ‌جا چگال، مجموعه‌های همه‌جا چگال، فضای بئر، تصویر وارون و سایر مفاهیم توپولوژیکی مورد بررسی و مطالعه قرار خواهیم داد. سپس به تعریف و مطالعه‌ی فضاهای پارافشرده نسبت به یک ایده‌آل، فشرده‌ شمارش‌پذیری نسبت به یک ایده‌آل و فضای H -بسته می‌پردازیم .\\\\ مراجع \\cite{11} و \\cite{9} منابع اصلی این پایان نامه است. \\\\ کد رده‌بندی موضوعی ریاضی: اولیه {54D20 } و ثانویه { 54D30 }

ارتقاء امنیت وب با وف بومی