Skip to main content
SUPERVISOR
سیدمحمود طاهری (استاد راهنما) ناصررضا ارقامی (استاد مشاور)
 
STUDENT
Jalal Chachi
جلال چاچی

FACULTY - DEPARTMENT

دانشکده ریاضی
DEGREE
Doctor of Philosophy (PhD)
YEAR
1386

TITLE

Statistical Methods for Non-Precise Information
Three topics of statistical methods for non-precise information are investigated in fuzzy environment as follows: 1. Fuzzy confidence intervals, 2. Testing statistical hypotheses, and 3. Fuzzy regression. For the first topic, we introduce an approach to obtain fuzzy confidence interval for fuzzy parameter based on fuzzy random variables. For the second topic, we investigate two approaches to testing fuzzy hypotheses as follows: · A fuzzy confidence interval based approach, which obtains a fuzzy test function using the relationship between confidence intervals and testing hypotheses, and · A fuzzy test statistic and fuzzy critical value based approach, which compare these values using a criterion to obtain a fuzzy test function. Finally, the problem of fuzzy regression for crisp input-fuzzy output, and also for fuzzy input-fuzzy output is studied. In this regard, three methods are proposed. MSC 2010: 62A86, 62C86, 62F03, 62F10, 62F15, 62G07, 03E72 Key words: Degree of acceptance (DA), Degree of rejection (DR), Fuzzy confidence interval, Fuzzy critical value, Fuzzy hypothesis, Fuzzy test statistic, Fuzzy robust regression, Testing hypothesis, Variable read fuzzy regression model, Most powerful fuzzy test, Uniformly most powerful fuzzy test, Least- absolutes fuzzy regression, Least-squares fuzzy regression.
در این رساله به بررسی سه موضوع زیر می پردازیم: 1. فاصله اطمینان در محیط فازی، 2. آزمون فرضیه در محیط فازی، 3. رگرسیون در محیط فازی. فاصله اطمینان در محیط فازی: در این زمینه بر اساس متغیرهای تصادفی فازی، یک روش جدید برای تشکیل فواصل اطمینان فازی در حالتهای یکطرفه و دوطرفه برای پارامتر فازی معرفی می کنیم. در این روش ابتدا براساس داده ها و پارامترهایی که از برش مشاهدات و پارامتر فازی به دست می آیند، فواصل اطمینان کلاسیک برای اینگونه پارامترها تشکیل می شود. سپس با ترکیب این فواصل ناحیه ای به عنوان کران های اطمینان ساخته می شود که طبق آن می توان درجه عضویت هر پارامتر فازی را در فواصل اطمینان فازی به دست آورد. آزمون فرضیه با استفاده از فواصل اطمینان فاز ی: در این روش، رویکردی برای آزمون فرضیه در محیط فازی پیشنهاد می شود که ارتباط مستقیم با فاصله اطمینان فازی دارد. در این روش با استفاده از فواصل اطمینان فازی تابع آزمون ساخته می شود. این تابع بر اساس میزان عضویت پارامتر مورد آزمون در فاصله اطمینان فازی ساخته می شود و طبق آن تصمیم گیری در مورد رد یا پذیرش فرضیه های مورد آزمون صورت می پذیرد. آزمون های فازی پرتوان و آزمون های فازی بطور یکنواخت پرتوان: در این روش بر اساس متغیرهای تصادفی به آزمون فرضیه هایی درباره پارامتر فازی جامعه می پردازیم. ابتدا آماره آزمون فازی و مقدار بحرانی فازی تعریف می شوند. سپس با استفاده از یک معیار این دو با یکدیگر مقایسه می شوند و بر این اساس درجه های رد و پذیرش فرضیه های به دست می آیند. آنگاه مفاهیم پرتوان ترین آزمون فازی و بطور یکنواخت پرتوان ترین آزمون فازی معرفی می شوند. در انتها با بیان و اثبات چند قضیه کلیدی شیوه به دست آوردن اینگونه آزمون ها را بیان می کنیم. رگرسیون در محیط فازی: در این قسمت سه رویکرد رگرسیونی جدید در محیط فازی پیشنهاد می شود. دو رویکرد، برای مدل سازی متغیر وابسته فازی و متغیرهای مستقل دقیق است و در رویکرد دیگر، متغیرهای وابسته و مستقل هردو فازی هستند. در رویکرد اول از رگرسیون کمترین قدرمطلق خطا در برآورد مراکز متغیر وابسته استفاده می شود و سپس جمله خطای فازی متناظر با هر مشاهده با استفاده از یک مساله بهینه سازی به دست می آید. در رویکرد دوم از متر هاسدورف تعمیم یافته در برآورد پارامترها استفاده می شود و رویکرد سوم یک مدل کمترین توان دوم خطاست که در آن ابتدا از برش های مشاهدات استفاده می شود و رده ای از مدل های بازه ای مقدار به دست می آید. سپس با الحاق این مدل ها پارمترهای نهایی مدل به دست می آیند.

ارتقاء امنیت وب با وف بومی