Evaluation of biodegradable and antibacterial Mg based nanocomposite repared by spark plasma sintering for orthopedic applications Millions of people suffer from bone diseases every year in the world. In recent years, implants have been developed to repair and fix bone fractures. In this respect, magnesium and its alloys potentially be applied as degradable metallic materials in orthopedic implants due to their degradability and resemblance to human cortical bone. However, the high corrosion rate and weak mechanical properties of pure Mg hinders its clinical application. Thus, the alloys and nanocomposites of Mg developed to improve the mechanical and degradation properties. Inflammation and infection at implants is another limitation of metallic implants in the human body. For this reason, the metallic implants with intrinsic antibacterial property introduced, that the copper and graphene nanoplates are the antibacterial property. Therefore, in this study biodegradable and antibacterial Mg-Al-Cu/Gr nanocomposite was developed using spark plasma sintering () approach for orthopedic applications. In the first stage, the Mg-1Al-Cu alloy consist of various amount of Cu (0, 0.25, 0.5 and 1 wt.%) prepared. For uniform distribution of Al and Cu in Mg matrix alloy, the Al-xCu (x = 20, 33 and 50 wt.%) powders fabricated by mechanical alloying with difference time of milling (10, 20 and 30 h).