Skip to main content
SUPERVISOR
Abdolreza Mirzaei,Maziar Palhang
عبدالرضا میرزایی دمابی (استاد راهنما) مازیار پالهنگ (استاد مشاور)
 
STUDENT
Elaheh Rashedi
الهه راشدی

FACULTY - DEPARTMENT

دانشکده مهندسی برق و کامپیوتر
DEGREE
Master of Science (MSc)
YEAR
1387
Clustering algorithms are unsupervised learning methods which explore and group similar patterns within a set of patterns. The goal of the clustering methods is to partition the set of input patterns into clusters such that all patterns within a cluster are similar to each other and different from the members of other clusters. In many applications, clustering methods which lead to representations that are hierarchical are more appropriate than flat representations. The most natural representation of a hierarchical clustering is its corresponding tree which is called dendrogram, which shows how the data points are grouped. Generally, hierarchical clustering is preferred in comparison with the nonhierarchical clustering for applications when the exact number of the clusters is not determined or when we are interested in finding the relation between clusters. In supervised pattern recognition, an effective method for solving complicated problems is to use decision combination. The idea of ensemble learning is to combine multiple learners’ predictions. In the area of supervised and unsupervised learning algorithms, ensembles often create better results compared to single solutions. justify; TEXT-INDENT: 18pt; MARGIN: 0cm 0cm 0pt; unicode-bidi: embed; DIRECTION: ltr; mso-layout-grid-align: none" Keywords: Ensemble clustering, hierarchical clustering, description matrix combination, boosting theory
ایده اصلی یادگیری تجمعی به منظور ترکیب پیش بینی یادگیرنده های چندگانه مطرح شده است. روش های یادگیری تجمعی در زمینه ی الگوریتم های یادگیری با ناظر و بدون ناظر، معمولاً نتایج بهتری در مقایسه با روش های واحد ایجاد می کنند. روش های طبقه بندی چندگانه، طبقه بندها را برای رسیدن به طبقه بندی با دقت پیش بینی بالاتر با یکدیگر ترکیب می کنند. به طور مشابه، روش های خوشه بندی چندگانه با ترکیب خوشه بندها، خوشه بندی هایی با کیفیت بالاتر ایجاد می کنند. رایج ترین روش های تجمعی قدرتمند اخیر روش بگینگ و روش تقویت هستند. روش تقویت یک مسأله عمومی در یادگیری ماشین است که یک الگوریتم یادگیری ضعیف را به الگوریتم قدرتمندتری با دقت بالاتر تبدیل می کند. الگوریتم های موفق بسیاری در زمینه سیستم های طبقه بند چندگانه بر مبنای روش بگینگ و روش تقویت ارائه شده اند، همچنین تعدادی الگوریتم خوشه بند چندگانه بر مبنای بگینگ و روش تقویت بر روی خوشه بندی های مسطح طراحی شده اند که در مقایسه با خوشه بندهای واحد دارای کیفیت بالاتری هستند. بر این اساس می توان انتظار داشت با استفاده از تجمع خوشه بندها در زمینه ی خوشه بندی های سلسله مراتبی نیز بتوان به کیفیت بالاتری در ایجاد خوشه بندی های سلسله مراتبی دست یافت. بر اساس آخرین مطالعات انجام شده، مسأله تجمع خوشه بندهای سلسله مراتبی تاکنون چندان مورد توجه قرار نگرفته است. در این پایان نامه، دو راهکار چندگانه ارائه شده است که تجمعی از خوشه بندی های سلسله مراتبی را تولید و با یکدیگر ترکیب می کند. در راهکار اول یک روش میانگین گیری وزندار برای ترکیب خوشه بندی های موجود در تجمع پیشنهاد شده است که در آن وزن های ترکیب بر اساس الگوریتم وراثتی تعیین می گردند. در این الگوریتم، ابتدا دندروگرام های خوشه بندی های پایه ی موجود در تجمع به ماتریس توصیف عدم شباهت تبدیل شده و توسط الگوریتم وراثتی وزن دهی می شوند. سپس ماتریس های توصیف توسط عملگر جمع ماتریس ها به صورت وزن دار با یکدیگر ترکیب شده و ماتریس تجمیع نهایی را ایجاد می کنند. خوشه بندی نهایی به صورت دندروگرام حاصل از این ماتریس تجمیع خواهد بود. این الگوریتم می تواند دارای ورودی هایی از چند نوع خوشه بند اولیه متفاوت باشد. تحلیل نتایج تجربی بیانگر برتری کیفیت خوشه بندی ایجاد شده توسط روش پیشنهادی در مقایسه با الگوریتم های خوشه بندی عمومی است. در راهکار دوم، یک روش جدید خوشه بندی تجمعی بر مبنای تئوری تقویت به منظور افزایش دقت خوشه بندی معرفی شده است. الگوریتم پیشنهادی شامل چندین حلقه ی تکراری تقویت است که در هر حلقه ی تکرار یک زیر مجموعه الگوی آموزشی توسط نمونه برداری وزندار تصادفی از میان مجموعه داده ها انتخاب می شود و سپس یک خوشه بندی سلسله مراتبی بر روی این زیرمجموعه الگوها ایجاد می گردد. خوشه بندی تجمیعی نهایی به صورت ترکیب خوشه بندی های ایجاد شده در هر حلقه ی تکرار خواهد بود. در این الگوریتم عملیات ترکیب بر روی ماتریس های توصیف دندروگرام مرتبط با ... کلمات کلیدی: خوشه بند چندگانه، خوشه بندی سلسله مراتبی، ترکیب ماتریس های توصیف، نظریه تقویت

ارتقاء امنیت وب با وف بومی